

Custodia Security

SIR Review
Conducted By: Ali Kalout, Ali Shehab

Contents

1. Disclaimer​ 3
2. Introduction​ 3
3. About SIR​ 3
4. Risk Classification​ 4

4.1. Impact​ 4
4.2. Likelihood​ 4
4.3. Action required for severity levels​ 5

5. Security Assessment Summary​ 5
6. Executive Summary​ 5
7. Findings​ 7

7.1. Low Findings​ 7
[L-01] Missing dividend distribution on unstake and claim​ 7
[L-02] Lack of permissionless fallback for distributing auction proceeds​ 8
[L-03] Incorrect fee assumptions when starting a new auction​ 9

7.2. Informational Findings​ 10
[I-01] Vault fee withdrawal getter omission​ 10

1. Disclaimer
A smart contract security review cannot ensure the absolute absence of
vulnerabilities. This process is limited by time, resources, and expertise and
aims to identify as many vulnerabilities as possible. We cannot guarantee
complete security after the review, nor can we assure that the review will
detect every issue in your smart contracts. We strongly recommend
follow-up security reviews, bug bounty programs, and on-chain monitoring.

2. Introduction

Custodia conducted a security assessment of SIR’s smart contract,
ensuring its proper implementation.

3. About SIR

SIR offers a new way to take leverage in DeFi: compounding exposure
without the usual drag. Instead of funding or maintenance fees that slowly
eat returns, SIR charges one fixed fee only when you open a position.

4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1. Impact

●​ High: Results in a substantial loss of assets within the protocol or
significantly impacts a group of users.

●​ Medium: Causes a minor loss of funds (such as value leakage) or
affects a core functionality of the protocol.

●​ Low: Leads to any unexpected behavior in some of the protocol's
functionalities, but is not critical.

4.2. Likelihood

●​ High: The attack path is feasible with reasonable assumptions that
replicate on-chain conditions, and the cost of the attack is relatively
low compared to the potential funds that can be stolen or lost.

●​ Medium: The attack vector is conditionally incentivized but still
relatively likely.

●​ Low: The attack requires too many or highly unlikely assumptions, or
it demands a significant stake by the attacker with little or no
incentive.

4.3. Action required for severity levels

●​ Critical: Must fix as soon as possible
●​ High: Must fix
●​ Medium: Should fix
●​ Low: Could fix

5. Security Assessment Summary

Duration: 12/07/2025 - 26/07/2025
Repository: SIR-trading/Core
Commit: e16dbb75925dc0132af10d2eb41033fc2025cf31

●​ src/*

6. Executive Summary

Throughout the security review, Ali Kalout and Ali Shehab engaged with
SIR’s team to review SIR. During this review, 4 issues were uncovered.

Findings Count

Severity Amount

Critical N/A

High N/A

Medium N/A

Low 3

Informational 1

Total Finding 4

Summary of Findings

ID Title Severity Status

L-01 Missing dividend distribution on unstake and claim Low Acknowledged

L-02 Lack of permissionless fallback for distributing auction
proceeds

Low Acknowledged

L-03 Incorrect fee assumptions when starting a new
auction

Low Resolved

I-01 Vault fee withdrawal getter omission Info Acknowledged

7. Findings

7.1. Low Findings

[L-01] Missing dividend distribution on unstake and claim

Severity:
Low

Description:
The unstake and claim functions both rely on the current value of
stakingParams.cumulativeETHPerSIRx80 to compute the user's entitled
dividends. However, they do not call _distributeDividends() beforehand to flush
any idle ETH or WETH sitting in the contract. As a result, if there are undisbursed
dividends—e.g. WETH sent directly to the contract or ETH from auction payouts—the
next user to unstake or claim will not receive their fair share of rewards.

Users who unstake or claim while the contract holds unprocessed dividend funds (e.g.,
ETH or WETH) will permanently miss out on a portion of their rewards, especially if no
one calls collectFeesAndStartAuction before them. This edge case breaks
reward accounting and violates the fairness expectation that rewards should reflect all
dividends currently held by the contract.

Recommendations:
Call _distributeDividends() at the start of both unstake and claim to ensure
up-to-date dividend state before computing user entitlements.

[L-02] Lack of permissionless fallback for distributing
auction proceeds

Severity:
Low

Description:
Currently, only the winning bidder is allowed to call getAuctionLot() to finalize the
auction and trigger dividend distribution. This creates a dependency on the winner's
timely action.
If the winner delays claiming their auction lot, the corresponding ETH dividends are
withheld from stakers until the cooldown period (10 days) ends and a new auction starts
via collectFeesAndStartAuction. In the meantime, users can unstake and exit
the protocol, potentially receiving less than their fair share of dividends due to outdated
cumulativeETHPerSIRx80.

If the winner delays claiming the lot, dividends are not distributed promptly, and users
who unstake during that period may receive fewer ETH rewards than they are entitled
to.

Recommendations:
Allow anyone (not just the winner) to distribute the bid winnings after the auction
duration passes, and trigger dividend distribution.

[L-03] Incorrect fee assumptions when starting a new auction

Severity:
Low

Description:
The contract uses vault.withdrawFees(token) to determine whether a new
auction can be started and emits the withdrawn amount as the feesToBeAuctioned.
However, this check can fail to account for excess token balances already present in the
contract. If the previous auction's winner was blacklisted or never claimed their lot, the
_payAuctionWinner call will silently revert, and the unclaimed tokens will remain
stuck in the contract. Since withdrawFees() returns zero in that case, a new auction
cannot be initiated, despite tokens still being present and ready to be auctioned.

This can cause auctions to stall indefinitely if no new fees are accrued and the contract
holds stale tokens from a previous unclaimed or failed auction payout. Additionally,
when a new auction is eventually started, the AuctionStarted event may emit an
inaccurate feesToBeAuctioned value, which reflects only the withdrawn amount and
not the total lot being auctioned (which includes the stale balance).

Recommendations:
Instead of relying solely on the result of withdrawFees(), the logic should check the
contract’s actual token balance.

7.2. Informational Findings

[I-01] Vault fee withdrawal getter omission

Description:
The withdrawFees(address token) function computes fees owed to SIR stakers
as the surplus of the contract’s balance over the totalReserves[token]. However,
the contract does not expose a public view function to query the withdrawable fees for a
given token prior to execution. This creates unnecessary opacity and makes it harder to
track available rewards for stakers.

Recommendations:
Introduce a new getter function that calculates and exposes the accumulated staker
fees.

	
	
	Custodia Security
	Contents
	
	1. Disclaimer
	2. Introduction
	3. About SIR
	4. Risk Classification
	4.1. Impact
	4.2. Likelihood
	4.3. Action required for severity levels

	5. Security Assessment Summary
	6. Executive Summary
	
	7. Findings
	7.1. Low Findings
	[L-01] Missing dividend distribution on unstake and claim
	[L-02] Lack of permissionless fallback for distributing auction proceeds
	[L-03] Incorrect fee assumptions when starting a new auction

	7.2. Informational Findings
	[I-01] Vault fee withdrawal getter omission

